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Abstract—We dedicate this work to the memory of academician B.N. Petrov. It develops
the principles of terminal control of rocket carriers formulated by him. Next-generation rocket
carriers implement the principle of interconnected, coordinated terminal control of the center of
mass motion and propellant consumption. In this article we consider the problem of synthesizing
such control and the main principles of its implementation.

Keywords : terminal control, predictive model

DOI: 10.25728/arcRAS.2023.31.64.001

1. INTRODUCTION

The beginning of B.N. Petrov’s creative activity coincided with the time when our war-exhausted
country made a gigantic breakthrough, opening the way to space for humanity. Soviet science
played an important role in this breakthrough. Many of the problems related to the creation of
rocket carriers belong to automatic control of mobile objects. B.N. Petrov’s profound knowledge
in this field and his erudition allowed him to actively participate in the development of new unique
automatic control problems and in the development and discussion of our country’s space programs
alongside leading figures in rocket and space science and technology.

He rightfully became one of the founders of domestic cosmonautics, working for many years
in close contact with S.P. Korolev, V.P. Glushko, M.K. Yangel, V.N. Chelomey, V.F. Utkin, and
N.A. Pilyugin.

The results of B.N. Petrov and Institute of Dynamics Research, which he headed in the develop-
ment of methods of modeling and regulating liquid rocket engine thrust and propellant component
ratio, are used in many onboard terminal systems. These systems significantly increase the en-
ergy of rockets by dramatically reducing the guaranteed propellant reserves. The book by Chertok
“Rockets and People” [1] notes the significance of this work.

Understanding the specifics of onboard terminal systems and the peculiarities of organizing
control processes allowed B.N. Petrov and his students to classify these systems as a separate class
among other automatic control systems. The monograph “Onboard Terminal Control Systems” [2]
develops the principles and elements of the theory of this class of systems.

The ideas of B.N. Petrov have further evolved and been applied in modern developments of
the Institute in the field of rocket and space technology, resulting in the creation of terminal
control systems for new-generation rocket carriers and booster blocks for space and defense purposes
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(upgraded carrier rockets “Soyuz-2”, “Angara” rocket family, “Sarmat” rocket, rocket boosters
under development “Soyuz-5”, “Amur”, and the KVTK booster block).

Next-generation rocket carriers implement the principle of interconnected, coordinated terminal
control of the center of mass motion and propellant consumption. In this article we consider the
problem of synthesizing such control and the main principles of its implementation.

2. PROBLEM STATEMENT

Consider the control of the center of mass motion of the rocket carrier in the exoatmospheric
flight phase.

To simplify, we assume the following:

—Aerodynamic forces are absent,

—The Earth’s gravitational field is parallel to the surface and the acceleration of the gravitational
force is constant at all altitudes �g = const.

—Rotation of Earth is neglected.

The motion of the center of mass of the rocket stage in the longitudinal plane (the plane of the
trajectory) in the exoatmospheric flight phase is described by the following equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V̇x =
P

mκ +m
cos(ϑ), V̇y =

P

mκ +m
sin(ϑ)− g, P = wr,

ẋ = Vx, ẏ = Vy, ṁ = −r,

ϑ̇ = ω,

ω̇ = ϕ(ϑ, ω, ϑdes),

(1)

where x, y are horizontal and vertical coordinates, m is propellant mass, mκ is dry mass of the
stage, r is propellant consumption rate, w is specific exhaust velocity, P is engine thrust, g is
acceleration of gravity, ϑ is pitch angle, ϑdes is control input (desired value of ϑ) for changing the
pitch angle, Vx, Vy are horizontal and vertical velocity components.

The equation for the pitch angle ϑ and the angular velocity ω in (1) simplistically describes the
operation of the stabilization system.

Coordinates x, y, m, ϑ, and their derivatives are functions of time t, t ∈ [t0, tk], tk is the terminal
time.

Note that the pitch angle ϑ converges to the value ϑdes(t) in a significantly shorter time than tk.

For the final stage, reaching the specified altitude with zero vertical velocity is required:{
y(tk) = yk,

Vy(tk) = 0.
(2)

No conditions are set for the horizontal velocity component. Solving the problem assumes maxi-
mizing the horizontal component.

For the lower stages of the rocket, we state the problem of hitting the designated burned-out
stage impact areas. In this case, we can determine boundary conditions for deviation of the flight
range L of the burned-out stage due to deviations of the motion coordinates at the end of the flight
from the target values:

δL = ζx(x(tk)− xk) + ζy(y(tk)− yk) + ζV x(Vx(tk)− Vxk) + ζV y(Vy(tk)− Vyk) = 0, (3)

where ζx, ζy, ζV x, ζV y are partial derivatives of δL with respect to the motion coordinates, δ is
deviation of the flight range from the target value.
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We can write the equations determining the apparent velocity change and the engine propellant
consumption processes in the following form:

Ẇ =
rg

mκ +m
Psp, Psp =

w

g
, m = mo +mf, r = ro + rf,

ṁo = −ro, ṁf = −rf, Km =
ṁo

ṁf
, Psp = ϕ(Km),

ṙo = fo(ro, αKm , αR), ṙf = ff (rf, αKm , αR),

(4)

with initial conditions accounting for fueling errors and pre-launch propellant component consump-
tion scatter at the moment of the fuel consumption control system activation mo(t0), mf (t0).

Here, mo, mf are the oxidizer and fuel masses, Psp is the specific thrust of the propulsion sys-
tem, ro, rf are the propellant consumption rates determined by the engine equations, αKm, αR are
the positions of the engine control devices determined by the specified values of the propellant
component consumption ratio coefficient Km and thrust engine condition R.

All coordinates W , mo, mf, ro, rf and their derivatives are functions of time. We consider them
on a bounded time interval t, t ∈ [t0, tk], tk is terminal time.

The positions of the engine control devices that result in the desired values of the fuel component
consumption ratio coefficient Km(t) and the thrust mode R(t) for engine operation are determined
by static nonlinear engine equations:

αKm(t) = fKm(Km(t), R(t)), αR(t) = fR(Km(t), R(t)), R(t) =
P (t)

Pnom
(t).

We assume here that Km(t) is calculated in the algorithm of the terminal control system for
object (3), and R(t) is determined by the specified thrust program.

Note that the transients of the propellant consumption rate ro, rf in response to the position
change of the engine control devices αKm(t), αR(t) conclude in a time significantly shorter than tk.

We impose constraints on the value of the fuel component consumption ratio coefficient that can
change during control. We determine the boundary values based on the conditions for stable engine
operation and significantly depend on the thrust mode: Kmmin(R, t) � Km(t) � Kmmax(R, t).

In this case, we impose final terminal conditions on the remaining propellant components at
the moment of engine shutdown and determine them based on the requirements for safe engine
shutdown. We specify the conditions as inequalities meaning the necessity of positive values of
the remaining propellant components at the moment of engine shutdown, generated by the control
system, relative to the propellant level that ensures a safe engine shutdown:

mo(tk)−momin > 0, mf (tk)−mfmin > 0. (5)

Here momin, mfmin are the remaining propellant components that are not spent due to the intake
design features and accounting for the control system errors.

We include the values momin, mfmin in mκ. We understand m(t), mo(t), mf (t) as the values of
the mass of the current propellant component excluding momin, mfmin.

Let’s define the vector of residuals of the specified boundary conditions (2), (3), (5) for the
terminal problem solution, and the vector of control inputs:

z0 = (y(tk)− yk, Vy(tk),mo(tk),mf (tk)) — for the terminal stage,

z0 = (δL,mo(tk),mf (tk)) — for the bottom stages,

u = (ϑdes,Km, tk).

(6)
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Note that the value of R, which determines the engine thrust program, is a specified function of
time and is not included in the vector of control inputs u. The terminal time moment tk can vary
and can be used as a control parameter to solve the terminal problem.

The main objective of terminal control is to minimize the residuals of the boundary conditions.
In addition to satisfying the boundary conditions, terminal systems also have other requirements,
the physical content of which can include energy resource costs, time costs, and control losses. In
this work, we limit the problem of criterion synthesis to boundary conditions, the fulfillment of
which is a priority.

The control object of the considered terminal system, in terms of transition to the specified final
state, is quite inertial (it represents integrating elements).

We achieve control of these processes by influencing other coordinates of the object ϑ, ro, rf with
rapidly decaying dynamics of their transients. The essence of such control lies in setting the desired
steady-state values of these coordinates.

Control of the coordinates ϑ, ro, rf (by changing the positions of actuators, drives, fins, etc.)
consists of stabilizing these coordinates of the object relative to the specified values determined by
the vector u(t). The operation of the closed stabilization loop is simplified by a system of equations
for ϑ, ro, rf .

In this case, we consider the operation of the stabilization loop in terms of transient responses
to changes in the control input. We assume that the transient process is completed in an interval
significantly shorter than the terminal control interval.

3. CONTROL ALGORITHM SYNTHESIS IN THE CLASS
OF PIECEWISE-CONSTANT FUNCTIONS

OF PREDICTED RESIDUALS OF THE TERMINAL CONDITIONS

Let us consider the object terminal control problem (1), (4) within the class of predictive model
systems.

Let us integrate (1) on prediction interval τ ∈ [t, tcommand], where tcommand is the predicted value
of the terminal time moment. We define the current initial rocket center of mass coordinates x, y,
Vx, Vy at time t in the inertial navigation system. We substitute propellant mass m(t) equation
in (1) with mmod(t) formed in the propellant management algorithm:

ṁmod(t) = rmod(t),

rmod(t) = rcycl(t)(1 + λ(t)),
(7)

where rcycl is cumulative propellant consumption corresponding to a given cyclogram of the en-
gine’s thrust operation mode, λ(t) is controlled parameter of the model that corrects rcycl(t) in
the propellant consumption model. The physical analog of λ(t) is the relative deviation of the
cumulative consumption from its nominal value.

Note that the cumulative propellant consumption value corresponding to a given cyclogram of
the engine’s thrust operation mode (rcycl(t)) can be determined based on measurements of apparent
acceleration and equation for Ẇ in (4).

We integrate (1), (7) in the interval τ ∈ [t, tcommand] with the assumption that ϑ(τ) = ϑ(t),
r(τ) = rcycl(τ)(1 + λ(t)), m(t) = mmod(t).

Let us define tcommand from condition mmod(t)−
∫ tcommand
t rmod(τ)dτ = 0.

Let us define the values of the predicted residuals y(tcommand)− yk, Vy(tcommand), δL(tcommand).

When integrating (1) we can use the integral expressions presented in [3].

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023



1172 IVANOV et al.

We take the time moment t such that mmod(t) = 0 is the value of the terminal time moment tk
(engine shutdown).

Regarding the management of propellant components, the predictive model includes equation (7)
and equations of the processes of change of the mass of propellant components (4). Taking into
account the interdependence of equation (7) with (4), let us define the equations for the deviations
of the current values of oxidizer and fuel masses from the model analogues, formed from the model
value of the total propellant mass according to the nominal value of ratio coefficient Km:

Δmo(t) = mo(t)−mmod(t)
Kmnom

Km nom + 1
,

Δmf(t) = mf(t)−mmod(t)
1

Km nom + 1
,

(8)

where mo(t), mf(t) are determined based on measurements of discrete level sensors in tanks.

For the deviations (8), we can obtain equations of the following form:

Δṁo(t) = ro(t)− rmod(t)
Km nom

Km nom + 1
,

Δṁf(t) = rf(t)− rmod(t)
1

Km nom + 1
.

(9)

Let us integrate equations (9) in interval τ ∈ [t, tcommand] assuming ro(τ) = ro(t), rf(τ) = rf(t),
rmod(τ) = rcycl(τ)(1 + λ(t)), and initial conditions Δmo(t), Δmf(t).

Determine the values of the predicted residuals Δmo(tcommand), Δmf(tcommand).

Due to predictive model of the object (1), (4), the vector of predicted boundary condition
residuals (6) is defined as

z(t)= (ypr(tcommand)− yk, Vypr(tcommand),Δmo(tcommand),Δmf (tcommand))

— for the terminal rocket stage,

z(t)= (δL,Δmo(tcommand),mf (tcommand)) — for the bottom rocket stage,

(10)

and the vector of control inputs in form u = (ϑdes,Km, λ).

If t → tk, tcommand → tk, z(t) → z0.

We solve the problem of terminal control of object (1), (4) by forming feedback control based
on predicted boundary condition residuals (10).

Let xT (t) = (x(t), y(t), Vx(t), Vy(t),Δmo(t),Δmf (t),mmod(t)) be the vector of coordinates of the
predicted model of the object (1), (7), (9) supplemented with equations for ṁo, ṁf, ṙo, ṙf, which
determine the boundary condition residuals, and let xu(t) = (ϑ(t), ro(t), rf (t), λ(t)) be the vector
of coordinates directly influenced by the control inputs.

As shown in [4, 5], we determine the derivative with respect to time and the differential equation
for the vector of predicted boundary condition residuals z(t) by differentiating z(t) as a composite
function:

dz(t)

dt
=

∂z(t)

∂xT (tcommand)

[
∂xT (tcommand)

∂xu(t)

dxu(t)

d(t)
+

dtcommand

dt

dxT (tcommand)

d(t)

]
.

We choose control inputs ϑdes(t), Km(t), λ(t) from the class of piecewise-constant functions of
time. The control input for the pitch angle ϑdes changes discretely at moments in time when the
information is updated from the inertial navigation system. The control inputs Km(t) and λ(t)
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for the fuel consumption processes change at discrete moments in time when the levels of the
components in the tanks are measured. At these same moments transient processes for ro(t), rf (t)
appear and the quantities rmod(t) and tcommand(t) change abruptly.

For piecewise-constant control, we can obtain the difference equations for z(t) from the differ-
ential equations. We introduce notation for the components of the residuals vector:

zy(t) = ypr(tcommand)− yk, zV (t) = Vypr(tcommand),

zmo(t) = Δmo(tcommand), zmf
(t) = Δmf (tcommand), zδ(t) = δ(tcommand).

We can express the difference equations for the components of the vector z(t) as follows. In
terms of controlling the motion of the center of mass, the difference equations are determined for
discrete moments in time ti when the navigation information is updated i = 0, 1, 2, . . . , I, tI+1 = tk
(when λ(t) = const, tcommand(t) = const):

zy(ti+1) = zy(ti) +
∂zy
∂ϑ

(ti)Δϑi,

zV y(ti+1) = zV y(ti) +
∂zV y

∂ϑ
(ti)Δϑi,

zδ(ti+1) = zδ(ti) +
∂zδ
∂ϑ

(ti)Δϑ.

(11)

Here

Δϑi =

ti+δt∫
ti

ϑ̇(τ)dτ,

where δt is time interval of the transient in object (1) with respect to coordinate ϑ during an abrupt
control input ϑdes change at time momentti.

Furthermore, at time moments tj of discrete measurement of the propellant level in tanks, the
aforementioned residuals change due to changes in λ(t), tcommand(t).

Let us assume that the level sensors conduct discrete measurements at one of the discrete time
moments of navigational information update tj = ti. Let us add terms accounting for abrupt
changes of λ(t) and tcommand(t) to (11):

zy(ti+1)= zy(ti) +
∂zy
∂ϑ

(ti)Δϑi +
∂zy

∂rmod
(ti)rcycl(tj)Δλj +Δtcommandj ẏ(tcommand),

zVy(ti+1)= zVy(ti) +
∂zVy

∂ϑ
(ti)Δϑi +

∂zVy

∂rmod
(ti)rcycl(tj)Δλj +Δtcommandj V̇y(tcommand),

zδ(ti+1)= zδ(ti) +
∂zδ
∂ϑ

(ti)Δϑi +
∂zδ

∂rmod
(ti)rcycl(tj)Δλj

+Δtcommandj(ζxẋ(tcommand)+ ζyẏ(tcommand)+ ζV xV̇x(tcommand)+ ζV yV̇y(tcommand)).

(12)

Here Δtcommandj is difference of tcommandj values determined from equation (7) at tj while λ = λ(tj)
and λ = λ(tj)+Δλj. We can determine the value of this difference with the following approximate
expression: Δtcommandj = ζtk(tj)Δλj .
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In regard to propellant management, we define difference equations for discrete time moments tj
of information update of the level sensors:

zmo(tj+1) = zmo(tj) +
∂zmo

∂ro
(tj)Δroj +

∂zmo

∂rmod
(tj)rcycl(tj)Δλj

+ (ro(tj)− rmod(tj)
Km nom

Kmnom + 1
ζtk(tj)Δλj),

zmf
(tj+1) = zmf

(tj) +
∂zmf

∂rf
(tj)Δrfj +

∂zmf

∂rmod
(tj)rcycl(tj)Δλj

+ (rf (tj)− rmod(tj)
1

Km nom + 1
ζtk(tj)Δλj),

(13)

Here

Δroj =

tj+δt∫
tj

fo(ro, αKm , αR)dτ, Δrfj =

tj+δt∫
tj

ff (rf, αKm, αR)dτ,

where δt is transient time interval in object (4) with respect to coordinates ro, rf during abrupt
change of αKm during implementation of control input Km(t) at time ti.

For linearized engine equations under constant thrust mode, the values of propellant compo-
nent flow increments due to changes in ratio coefficient Km can be determined with the following
expression [5]:

Δroj =
δro(tj)

δKm
ΔKmj , Δrfj =

δrf (tj)

δKm
ΔKmj .

Let us rephrase the original terminal control problem. Instead of finding control u(t) in the
class of piecewise-constant functions, we search for the discrete sequence of coordinate increments
ϑ(t),Km(t), λ(t) at time points ti, tj .

Based on difference equations (11)–(13), we define algorithms for forming control input vector
Δu = (Δϑi,ΔKmj ,Δλj) functions of the predicted boundary condition residuals.

The main disturbance in the terminal problem considered is the unknown initial conditions for
the equations of the coordinates of the object (1), (4). The ability to counteract these disturbances
when controlling the regions of the lower stage drop depends on the fact that the dimensions of
the control vector are equal to the dimensions of the residual vector. When controlling the final
stage, the dimensions of the boundary condition vector increase. In this case, to solve the terminal
problem, it is necessary to choose the values of the control inputs for two discrete time points.
In this case, the number of independent control inputs is larger than the dimensions of the residual
vector. As a result of the analysis of possible options to form control inputs for two discrete time
points, we adopted the following most obvious control algorithm. Consider a discrete time point tj.

From the discrete equations (13) for the boundary condition residuals in terms of propellant con-
sumption management, we determine the values of the control inputs Km(tj), Δλ(tj). The control
algorithm for the pitch angle with feedback based on predicted residual values ypr(tcommand)− yk,
Vypr(tcommand), which ensures the solution of the terminal problem under the given boundary
conditions for the coordinates y(tk), Vy(tk) = 0, is determined from equations (11), (12) for two
discrete time points ti+1, ti−p+1. It should be noted that in the interval [ti, ti−p+1], the residuals
ypr(tcommand)− yk, Vypr(tcommand) maintain their values unchanged.

The algorithm to control the pitch angle with the feedback predicted from discrepancies
ypr(tcommand) − yk, Vypr(tcommand) at discrete time points ti, ti−p is determined based on equa-
tion (12). It takes into account the value Δλ(ti), calculated in the propellant consumption control

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023



TERMINAL CONTROL OF CENTER OF MASS MOTION 1175

algorithm. The procedure to form this algorithm is described in [4]. In this case, the pitch angle
at time ti−p receives an increment Δϑ1, while at time ti it changes by an amount Δϑ2.

The presence of parametric disturbances determines the errors in terminal control. We counter
these disturbances by applying an iterative procedure to form the control vector Δu =
(Δϑi,ΔKmj ,Δλj) with feedback on the vector of the residuals of the predicted boundary con-
dition z(t).

The main result of solving the problem considered of coordinated control of the center of mass
motion and propellant consumption is the most complete utilization of available propellant re-
serves [6]. The essence of such coordinated control is as follows. Information about the current
propellant mass is generated in accordance with (7), where λ(t) is determined taking into account
the measurements of the level sensors. We take this into account when predicting the discrepan-
cies in the center of mass trajectory coordinates corresponding to the target of escape. In this
case, equations (12) for zy(tj+1), zV (tj+1), zδ(tj+1) include disturbance Δλj. By burning addi-
tional propellant, the final value of apparent velocity W (tcommand) increases. The resulting error
in the impact area is eliminated by varying the velocity in the neutral direction through additional
pitch angle control. Note that the effectiveness of such control is maintained until the pitch angle
approaches the value at which the maximum range of the spent stage is ensured.

Without taking into account the actual current value of the fuel mass in controlling the motion
of the center of mass, the terminal time tcommand is determined by the zero discrepancy in the
coordinates of the trajectory. In this case, the effects of disturbing factors such as deviations
in initial mass, propellant consumption, etc., on the trajectory that are countered by controlling
the thrust vector up to the moment tcommand, lead to significant unused propellant residues. The
magnitude of these residues can reach 1% of the initial propellant mass.

In the propellant consumption control loop, significant random measurement errors occur when
measuring the levels of propellant components in the tanks. As a result, even with error filtering,
random control errors occur in the form of component residues at the moment tk. To counteract
these errors, we introduce safety reserve propellant components, which reduces the effectiveness of
control. However, the implementation of coordinated terminal control for modern rocket boosters
such as Angara and Soyuz-5 reduces unused propellant reserves by a factor of 3.

The principle of coordinated control of the center of mass movement and fuel consumption is
implemented in the control algorithms of the Proton-M and Angara rocket boosters.

In foreign counterparts, terminal control of the center of mass movement by influencing the
thrust vector and iterative procedures for feedback control based on predicted residuals was de-
veloped almost at the same time (at the end of the last century) as in the USSR and later in the
Russian Federation. However, coordinated control of the center of mass movement and propellant
consumption was not required. Presumably, because there were no strict constraints on the spent
stages impact areas.

4. CONCLUSION

1. We consider the problem of synthesizing terminal control of the center of mass movement
and propellant consumption for liquid rocket boosters. The control synthesis problem is limited by
given boundary conditions, the fulfillment of which is a priority task.

When solving the problem, we assume that the system can be decomposed into interrelated
processes of final-state control and object stabilization. Decomposition allows us to reveal the
content of control processes in the terminal system. Terminal control is performed by specifying
the object coordinate values maintained by the stabilization loop. Stabilization of the object relative
to the given values is characterized by fast damping of the dynamics of transient processes. The
derivative of the residuals in the decomposed system explicitly depends on the terminal control.
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2. We solve the synthesis problem in the class of systems with the prediction of boundary
condition residuals, which are vector functions of the current values of the object coordinates and
time. We discretized the synthesis problem for control variations in the class of piecewise-constant
functions. We obtain difference equations for the vector of predicted residuals. We determined
algorithms to form the vector of control actions to change the pitch angle, the proportion of
component consumption rates, and the controlled parameter of the object model as functions of
the predicted residuals of the boundary condition based on the difference equations obtained.

3. The solution to the considered terminal problem is a jointly coordinated control of the
center of mass movement and propellant consumption, ensuring the most complete use of available
propellant reserves. The principle of coordinated control of the center of mass movement and fuel
component consumption is implemented in the control algorithms of the Proton-M rocket booster
and the Angara rocket booster family.
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